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The hierarchical reconstruction (HR) [Y.-J. Liu, C.-W. Shu, E. Tadmor, M.-P. Zhang, Central
discontinuous Galerkin methods on overlapping cells with a non-oscillatory hierarchical
reconstruction, SIAM J. Numer. Anal. 45 (2007) 2442–2467; Z.-L. Xu, Y.-J. Liu, C.-W. Shu,
Hierarchical reconstruction for discontinuous Galerkin methods on unstructured grids
with a WENO type linear reconstruction and partial neighboring cells, J. Comput. Phys.
228 (2009) 2194–2212] is applied to a piecewise quadratic spectral volume method on
two-dimensional unstructured grids as a limiting procedure to prevent spurious oscilla-
tions in numerical solutions. The key features of this HR are that the reconstruction on each
control volume only uses adjacent control volumes, which forms a compact stencil set, and
there is no truncation of higher degree terms of the polynomial. We explore a WENO-type
linear reconstruction on each hierarchical level for the reconstruction of high degree poly-
nomials. Numerical computations for scalar and system of nonlinear hyperbolic equations
are performed. We demonstrate that the hierarchical reconstruction can generate essen-
tially non-oscillatory solutions while keeping the resolution and desired order of accuracy
for smooth solutions.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

In a series of papers [21–23], Wang et al. introduced a framework of the spectral volume method to solve nonlinear time
dependent hyperbolic conservation laws
@uk
@t þr � FkðuÞ ¼ 0; k ¼ 1; . . . ;m; in X� ð0; TÞ;
uðx;0Þ ¼ u0ðxÞ;

(
ð1:1Þ
where X � Rd; x ¼ ðx1; . . . ; xdÞ; d is the dimension, u ¼ ðu1; . . . ;umÞT and FkðuÞ ¼ ðFk;1ðuÞ; . . . ; Fk;dðuÞÞ is the flux. The spectral
volume method evolves the cell average of the solution in each control volume (CV) as does the traditional finite volume
method. However, instead of performing a reconstruction procedure to obtain a high degree polynomial in each control vol-
ume, the spectral volume method groups certain numbers of control volumes to form a spectral volume (SV), so that a recon-
struction procedure can be performed using all cell averages of the solution on control volumes within the spectral volume
to obtain the polynomial. The reconstructed high degree polynomial in the spectral volume is utilized within all its control
. All rights reserved.
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volumes. This technique greatly reduces the complexity of the reconstruction procedure for smooth solutions compared to
traditional finite volume methods defined on control volumes.

Comparisons between the SV and discontinuous Galerkin (DG) methods can be found in papers by Sun and Wang [20] and
Zhang and Shu [26]. Both methods are high-order accurate on unstructured grids. Also, they both use compact stencils,
requiring only immediate cell (SV) neighbors to update the solution in a cell (SV).

Since the hyperbolic conservation laws may develop discontinuous solutions, in [22,23], the explicit, total variation
diminishing (TVD) Runge–Kutta time discretizations [17] are used in time; exact or approximate Riemann solvers are used
to compute the fluxes and the TVB projection limiters [22,23] are used to prevent or restrict the spurious oscillations near
discontinuities. In particular, if the solution value on a quadrature point of a CV lies beyond the maximum and minimum of
certain cell (CV) average values adjacent to the CV, the polynomial solution on the CV is truncated to a linear polynomial.
This linear polynomial is reconstructed by the Super-bee or Minmod limiter using neighboring cell (CV) average values.

A goal of the present paper is to develop a new limiting technique involving only adjacent SV neighbors without the need
to truncate the degree of polynomials in non-smooth regions. To achieve this, we explore a non-oscillatory hierarchical
reconstruction (HR) method developed in [25] to reconstruct the polynomial computed by the spectral volume method.
We consider the case of piecewise quadratic polynomial ðP2Þ in this paper.

The framework of the HR method was introduced by Liu et al. [12] for the staggered central DG method, in which cell
averages of various orders of derivatives of a polynomial are calculated and used in the reconstruction of non-oscillatory lin-
ear polynomials on each hierarchical stage. The coefficients of reconstructed linear polynomials are used to update the cor-
responding ones of the original polynomial. In [25], the authors extended the HR method to DG on unstructured triangular
meshes and developed a weighted linear reconstruction method for each hierarchical stage.

In this paper, we demonstrate that HR can generate essentially non-oscillatory solutions while keeping the resolution and
desired order of accuracy for smooth solutions. We also notice that from the results of accuracy tests (see Section 3), HR
seems to reduce the magnitude of the error as well.

This paper is organized as follows. Section 2 describes the spectral volume method and the limiting procedure. Numerical
tests are presented in Section 3. Concluding remarks and a plan for future work are included in Section 4.

2. Algorithm formulation

We use the method of lines approach to evolve the solution on the triangulated domain. The P2 spectral volume method is
used to compute the piecewise polynomial solution at each time level followed by the hierarchical reconstruction to remove
spurious oscillations near discontinuities of the solution.

2.1. Spectral volume method

2.1.1. Spatial discretization
The physical domain X � R2 is partitioned into a collection of N triangular elements X ¼ [Ni¼1Ki and
Fig. 1.
triangle
T h ¼ fKi : i ¼ 1; . . . ;Ng: ð2:1Þ
Each elementKi is called a spectral volume, which is further partitioned into sub-elements called control volumes, denoted by
Cij. Fig. 1 shows a 2D SV and its partition used in all test cases for a third order accurate SV scheme, where the SV contains six CVs.

To represent the solution as a polynomial of degree q on a SV, we need N ¼ ðqþ 1Þðqþ 2Þ=2 degrees of freedom (DOFs).
The number of the DOFs matches the number of CVs in the SV.
d

The partition of a triangular spectral volume into six control volumes supporting a quadratic polynomial, d ¼ 1=3 (assuming that the length of each
edge is 1).
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We choose Ki, the polynomial basis functions of degree q in a SV, to be monomials of the multidimensional Taylor expan-
sion about its centroid. For a general triangular SV Ki, the basis set in the ðx; yÞ coordinate is
B ¼ fgmðx� xi; y� yiÞ : m ¼ 1; . . . ;Ng ¼ f1; x� xi; y� yi; ðx� xiÞ2; ðx� xiÞðy� yiÞ; ðy� yiÞ
2
; . . . ; ðy� yiÞ

qg; ð2:2Þ
where xi � ðxi; yiÞ is the centroid of Ki, and N ¼ ðqþ 1Þðqþ 2Þ=2.
Let the piecewise polynomial solution (polynomial in each SV) for the kth equation of (1.1) be uh (neglecting its subscript

k for convenience), expressed as
uhðx; tÞ ¼
XN

m¼1

um;iðtÞgmðx� xi; y� yiÞ; x ¼ ðx; yÞ 2 Ki; i ¼ 1; . . . ;N : ð2:3Þ
For convenience, we sometimes write um;iðtÞ as umðtÞ when there is no confusion.
Denote the CV-averaged state for Cij as
�uij ¼ ð1=jCijjÞ
Z
Cij

uh dx; ð2:4Þ
where jCijj is the area of Cij. The semi-discrete finite volume scheme on Cij can be written as
d
dt

�uij þ
1
jCijj

Z
@Cij

FkðuhÞ � nij dC ¼ 0; j ¼ 1; . . . ;N; ð2:5Þ
where nij is the outer unit normal vector of Cij; i ¼ 1; . . . ;N . At any time when f�uij : j ¼ 1; . . . ;Ng have been solved,
fum;iðtÞ : m ¼ 1; . . . ;Ng can be recovered from Eqs. (2.4) and (2.3).

Since the approximated solution uh could be discontinuous across CV edges after a limiting procedure is applied so that
polynomials in some CVs are reconstructed, the flux function FkðuhÞ � nij appearing in Eq. (2.5) is not uniquely determined
and is replaced by a numerical flux function (the Lax–Friedrich flux, see e.g. [16]) defined by
hkðx; tÞ ¼ hk uin
h ;u

out
h

� �
¼ 1

2
Fk uin

h

� �
� nij þ Fk uout

h

� �
� nij

� �
þ a

2
uin

h � uout
h

� �
;

where a is the largest characteristic speed,
uin
h ðx; tÞ ¼ lim

y!x;y2Cint
ij

uhðy; tÞ;

uout
h ðx; tÞ ¼ lim

y!x;yRCij

uhðy; tÞ:
The boundary integrals in Eq. (2.5) are computed with the ðqþ 1Þth (or higher) order accurate Gaussian quadrature rule to
preserve the ðqþ 1Þth order of accuracy of the spectral volume discretization. For a third order accurate scheme, the two-
point Gaussian quadrature rule is used for the boundary integral.

2.1.2. Time integration
Eq. (2.5) is integrated in time using the widely used three stage (third order) TVD Runge–Kutta method [17].

2.2. Limiting by hierarchical reconstruction

Without an appropriate limiting procedure, the spectral volume method will produce non-physical oscillations in the vicin-
ity of discontinuities. We use the hierarchical reconstruction introduced in [12] to process the spectral volume solution at each
Runge–Kutta stage in order to eliminate such spurious oscillations. We refer to Refs. [12,13] for the implementation of HR for
central and finite volume schemes, and Ref. [25] for the implementation of HR for the DG method on unstructured meshes.

2.2.1. General description of the hierarchical reconstruction
We briefly describe the general procedure of HR here. The goal of HR is to reconstruct the polynomial ujðx� xjÞ of degree q

supported on an element V j with centroid xj by using polynomials in elements adjacent to V j. HR recomputes the coefficients
of ujðx� xjÞ (in Taylor expansion around xj), denoted by (the new coefficients)
1
m!

~uðmÞj ð0Þ; jmj ¼ m; m ¼ q; q� 1; . . . ;0;
iteratively from the highest to the lowest degree terms. We denote these adjacent elements (including element V j) as the set
fV Jg and polynomials supported on these elements as the set fuJðx� xJÞg. HR proceeds as follows:

Step 1. Suppose q P 2. For stage m ¼ q; q� 1; . . . ;2, do the following:

(a) Take a ðm� 1Þth order partial derivative for every uJðx� xJÞ to obtain the polynomial @m�1uJðx� xJÞ, respectively. In
particular, denote @m�1ujðx� xjÞ ¼ Ljðx� xjÞ þ Rjðx� xjÞ, where Ljðx� xjÞ is the linear part of @m�1ujðx� xjÞ and
Rjðx� xjÞ is the remainder.
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(b) Calculate the average value of every @m�1uJðx� xJÞ on element KJ to obtain @m�1uJ , respectively.
(c) Let eRjðx� xjÞ be the Rjðx� xjÞ with its coefficients replaced by the recomputed new coefficients from previous

q; . . . ;mþ 1 stages. Compute the average values of eRjðx� xjÞ on every element KJ to obtain RJ , respectively. Note that
at the qth stage, Rjðx� xjÞ ¼ eRjðx� xjÞ ¼ 0.

(d) Let LJ ¼ @m�1uJ � RJ for all J.
(e) Out of the new approximate cell average values fLJg, use a non-oscillatory reconstruction procedure to reconstruct the

linear polynomial Ljðx� xjÞ. The reconstructed coefficients in the first degree terms of Ljðx� xjÞ are candidates for the
corresponding uðmÞj ð0Þ’s, jmj ¼ m.

(f) Repeat from (a) to (e) until all possible combinations of the ðm� 1Þth order partial derivatives have been taken. Then
the candidates for all coefficients in the mth degree terms of ujðx� xjÞ have been computed. For each of these coeffi-
cients, say 1

m!
uðmÞj ð0Þ; jmj ¼ m, let the new value ~uðmÞj ð0Þ ¼ F (candidates of uðmÞj ð0Þ) where F is a limiter function.

Step 2. In order to find new coefficients in the zeroth and first degree terms of fujðx� xjÞg, we perform the procedure of
Step 1(a)–(f) with m ¼ 1. The new coefficient in the zeroth degree term is obtained by ensuring that the average value of
ujðx� xjÞ on element Kj is invariant with new coefficients.

2.2.2. Hierarchical reconstruction for the P2 spectral volume solution
Since we use P2 spectral volume solution in our computation, we describe the implementation of HR for piecewise qua-

dratic polynomial on CVs and the related piecewise linear polynomial reconstruction procedure in this section.
Suppose on each SV Ki 2 fK0;K1;K2;K3g of Fig. 2, a quadratic polynomial is given in the form of a two-dimensional Taylor

expansion
Fig. 2.
Cij; j ¼
uiðx� xi; y� yiÞ ¼ uið0;0Þ þ @xuið0;0Þðx� xiÞ þ @yuið0;0Þðy� yiÞ þ
1
2
@xxuið0;0Þðx� xiÞ2 þ @xyuið0;0Þðx� xiÞðy� yiÞ

þ 1
2
@yyuið0;0Þðy� yiÞ

2
; ð2:6Þ
where ðxi; yiÞ is the centroid of Ki. We will reconstruct a new quadratic polynomial on each CV C0j; j ¼ 0; . . . ;5, of K0 with a
point-wise error OðDx3Þ.

We first rewrite the polynomial (2.6) on every CV of Ki; i ¼ 0; . . . ;3 as
uijðx� xij; y� yijÞ ¼ uijð0;0Þ þ @xuijð0;0Þðx� xijÞ þ @yuijð0;0Þðy� yijÞ þ
1
2
@xxuijð0; 0Þðx� xijÞ2

þ @xyuijð0; 0Þðx� xijÞðy� yijÞ þ
1
2
@yyuijð0; 0Þðy� yijÞ

2
; ð2:7Þ
where ðxij; yijÞ is the centroid of CV Cij; i ¼ 0; . . . ;3 and j ¼ 0; . . . ;5; @xuijð0;0Þ ¼ @xuiðxij; yijÞ, similarly for other coefficients.
The difference between applying HR on a triangular CV and on a quadrilateral CV is that different adjacent CVs are used.

To perform HR on a quadrilateral CV, the four edge-adjacent CVs are used. To perform HR on a triangular CV, both the edge-
adjacent CVs and some neighbors of these adjacent CVs are used. For example, to perform HR on the triangular CV C01, the
stencil set consists of C01; C00; C05; C03; C02; C10; C15 and C14; to perform HR on CV C00, the stencil set consists of
C00; C20; C01; C10 and C05. In general, for a triangular CV, the principle of the selection of elements to build a stencil is to
use edge adjacent elements and vertex adjacent elements. while for a quadrilateral CV, the principle of the selection of ele-
ments to build a stencil is to use edge adjacent elements. The choice of this stencil is motivated by numerical test.
C00
C01 C02

C04

C10

C13

C20

C22C24

C25

C11

C15 C14

C12

C30

C31

C32C34

C35
C05 C03

C33

C21

C23

Schematic of 2D HR for CVs of K0 (the center SV). Adjacent SVs K1; K2 and K3 (clockwisely from the bottom) are used. Ki consists of CVs
0; . . . ;5.
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We now describe the HR algorithm. The algorithm applies to both triangular CVs and quadrilateral CVs. For convenience, we
relabel the stencil set as fC0; C1; . . . ;Ckg, where C0 is the CV on which the polynomial defined is to be reconstructed, k ¼ 7 if C0 is
a triangle and k ¼ 4 if C0 is a rectangle. The adjacent CVs fC1; . . . ;Ckg are labeled clockwisely surrounding CV C0. We also relabel
the centroid of Cl as ðxl; ylÞ, and the polynomial defined on it as ulðx� xl; y� ylÞ; l ¼ 0; . . . ; k, similarly for their coefficients.

According to the algorithm, we first take the first partial derivative with respect to x for ulðx� xl; y� ylÞ to obtain
Llðx� xl; y� ylÞ ¼ @xulð0;0Þ þ @xxulð0;0Þðx� xlÞ þ @xyulð0; 0Þðy� ylÞ; l ¼ 0; . . . ; k: ð2:8Þ

Calculate the average of Llðx� xl; y� ylÞ on element Cl to obtain Ll ¼ @xulð0;0Þ; l ¼ 0; . . . ; k. We then apply a non-oscillatory
reconstruction procedure to the cell averages Ll, which will be described at the end of this section, to obtain a new linear
polynomial on element C0,
eL0ðx� x0; y� y0Þ ¼ @x~u0ð0;0Þ þ @xx~u0ð0;0Þðx� x0Þ þ @xy~u0ð0;0Þðy� y0Þ; ð2:9Þ

where @x~u0ð0;0Þ ¼ L0. Then we take the first partial derivative with respect to y for ulðx� xl; y� ylÞ to redefine Llðx� xl;

y� ylÞ ¼ @yulð0;0Þ þ @xyulð0;0Þðx� xlÞ þ @yyulð0;0Þðy� ylÞ; l ¼ 0; . . . ; k, and perform the same reconstruction procedure to
obtain another polynomial on C0,
eL0ðx� x0; y� y0Þ ¼ @y~u0ð0;0Þ þ @xy~u0ð0;0Þðx� x0Þ þ @yy~u0ð0;0Þðy� y0Þ: ð2:10Þ
@xx~u0ð0;0Þ and @yy~u0ð0; 0Þ will be the corresponding new coefficients of the reconstructed quadratic polynomial on element
C0. @xy~u0ð0;0Þ appears twice in the above procedures and serves as candidates for the corresponding coefficient. A limiter
function will be used to determine the new value (still denoted by @xy~u0ð0;0Þ) for coefficient @xyu0ð0;0Þ out of its candidates,
which will be described later.

Now we perform Step 2 of the algorithm. We compute the average of ulðx� xl; y� ylÞ on element Cl to obtain
�ul; l ¼ 0; . . . ; k. And compute averages of the polynomial (note that its coefficients are updated by corresponding new values)
eR0ðx� x0; y� y0Þ ¼
1
2
@xx~u0ð0; 0Þðx� x0Þ2 þ @xy~u0ð0;0Þðx� x0Þðy� y0Þ þ

1
2
@yy~u0ð0; 0Þðy� y0Þ

2 ð2:11Þ
on elements C0; . . . ;Ck to obtain R0; . . . ;Rk, respectively. Redefine Ll ¼ ul � Rl; l ¼ 0; . . . ; k. The same reconstruction procedure
is applied to the cell averages fLlg to obtain new coefficients @x~u0ð0;0Þ and @y~u0ð0;0Þ for the polynomial on element C0. Fi-
nally let the new coefficient ~u0ð0;0Þ ¼ L0 to ensure conservation of the average of u0ðx� x0; y� y0Þ on element C0.

Next we describe the non-oscillatory reconstruction procedure. The following limiter functions are needed. The minmod
limiter function [4]
mðc1; c2; . . . ; crÞ ¼
minfc1; c2; . . . ; crg; if c1; c2; . . . ; cr > 0;
maxfc1; c2; . . . ; crg; if c1; c2; . . . ; cr < 0;
0; otherwise;

8><>: ð2:12Þ
gives a MUSCL reconstruction [9,11]; the limiter function
m2ðc1; c2; . . . ; crÞ ¼ cj; where jcjj ¼ minfjc1j; jc2j; . . . ; jcr jg; ð2:13Þ

gives the second order ENO [5] reconstruction; and the center biased minmod limiter mb and ENO limiter m2b can be formu-
lated as
mbðc1; c2; . . . ; crÞ ¼ m ð1þ eÞmðc1; c2; . . . ; crÞ;
1
r

Xr

i¼1

ci

 !
;

m2bðc1; c2; . . . ; crÞ ¼ m2 ð1þ eÞm2ðc1; c2; . . . ; crÞ;
1
r

Xr

i¼1

ci

 !
;

ð2:14Þ
where e > 0 is a small perturbation number. In [13], to construct central and finite volume schemes on structured meshes, a
value of e ¼ 0:01 is used.

We employ the weighted combination of functions used in [25] which follows the line of Refs. [9,10,15,8,6]. The recon-
struction procedure proceeds as follows.

Take the reconstruction of polynomial (2.9) as an example. We form k stencils fC0;Cl;Clþ1g, where l ¼ 1; . . . ; k and
Ckþ1 ¼ C1. On the first stencil, we solve the following equations for @xxu0;1ð0;0Þ and @xyu0;1ð0;0Þ
1
jClj

Z
Cl

L0;1ðx� x0; y� y0Þdxdy � L0 þ @xxu0;1ð0;0Þðxl � x0Þ þ @xyu0;1ð0; 0Þðyl � y0Þ ¼ Ll; ð2:15Þ
l ¼ 1;2, similarly for other stencils.
The linear polynomials computed from these stencils are denoted by L0;lðx� x0; y� y0Þ with first degree coefficients

@xxu0;lð0;0Þ; @xyu0;lð0;0Þ, l ¼ 1; . . . ; k. The reconstructed linear polynomial (2.9) is a convex combination of these computed
polynomials, i.e.,
eL0ðx� x0; y� y0Þ ¼
Xk

l¼1

wlL0;lðx� x0; y� y0Þ: ð2:16Þ
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The weight wl depends on L0;l and satisfies
wl P 0;
Xk

l¼1

wl ¼ 1: ð2:17Þ
The weights are smooth functions, and when a stencil contains a discontinuity of the solution, the corresponding weight
should be essentially 0. We define the weights as follows:
wl ¼
alPk
s¼1as

; l ¼ 1; . . . ; k; ð2:18Þ
where as will be defined later. Let
dl ¼
1=hlPk
s¼11=hs

; ð2:19Þ
where hl is the condition number of the corresponding stencil, kAkkA�1k, where A is the 2� 2 coefficient matrix of (2.15) for
the lth stencil, k � k denotes the 1-norm. This puts the condition number of a stencil into consideration so that an ill-condi-
tioned stencil has a smaller weight. Let
al ¼
dl

1þ hbl
; ð2:20Þ
where
bl ¼ ð@xxu0;lð0;0ÞÞ2 þ ð@xyu0;lð0; 0ÞÞ2; ð2:21Þ
h is the local mesh size. The constant 1 in (2.20) is used because it is large with respect to h. In principle the constant should
be chosen proportional to the size of the computational domain.

After all weights fwlg have been computed, the new coefficient @xx~u0ð0;0Þ is defined to be
@xx~u0 ¼
Pk

l¼1wl@xxu0;l; if Lmin < L0 < Lmax;

0; otherwise;

(
ð2:22Þ
where Lmin ¼minfLj : j ¼ 0; . . . ; kg and Lmax ¼maxfLj : j ¼ 0; . . . ; kg. Violation of Lmin < L0 < Lmax detects an extreme value.
This option is used to further reduce oscillations. The candidate coefficient @xy~u0ð0;0Þ is determined similarly.

The reconstruction of function (2.10) follows the above procedure. After the reconstruction of functions (2.9) and (2.10),
@xx~u0ð0;0Þ and @yy~u0ð0;0Þ are new values for corresponding terms of coefficients of u0ðx� x0; y� y0Þ as in (2.7). However, the
reconstruction of functions (2.9) and (2.10) leaves us two choices for the coefficient @xyu0ð0;0Þ, from (2.9) and (2.10). We use
the center-biased ENO limiter function m2b to determine the new coefficient @xy~u0ð0;0Þ from them, in which e is set to be
0.01.

In Step 2 of HR, a similar reconstruction procedure out of cell averages fLlg uses the following weight [16]:
al ¼
dl

ð�1 þ blÞ
2 ; ð2:23Þ
where bl is the ‘‘smoothness indicator” of the lth stencil similar to those used in the WENO scheme,
bl ¼ ð@xu0;lð0;0ÞÞ2 þ ð@yu0;lð0;0ÞÞ2; ð2:24Þ
@xu0;lð0;0Þ and @yu0;lð0;0Þ are the first degree coefficients determined in the lth stencil by an equation similar to (2.15). �1 > 0
is a small number introduced to keep the denominator from being 0. For all numerical experiments conducted in the paper,
we use a value of e1 ¼ 1:0� 10�6 and find it does not increase the overshoots or undershoots at discontinuities. Note that in
Step 2 one can also adopt the weight
al ¼
dl

1þ ðblÞ
2 ð2:25Þ
similar to the form of Eq. (2.20). We found that (2.25) gives slightly bigger overshoots or undershoots.
A function similar to Eq. (2.22) is used to determine the new coefficients @x~u0ð0;0Þ and @y~u0ð0;0Þ for the function

u0ðx� x0; y� y0Þ as in (2.7). The extreme value detector (i.e., the ‘‘0” case in (2.22)) is also applied here.
For systems, we perform the reconstruction component-wisely on conservative variables.

2.3. Local limiting procedure

Since shock waves or contact discontinuities are all local phenomena, in principle the limiting procedure only needs to be
applied to a small region covering the discontinuities. To speed up the computation, we modify the local limiting procedure
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in [25] to speed up the computation. This local limiting procedure adopts the limiter in [2] to identify ‘‘bad cells”, i.e., CVs
which may contain oscillatory solutions.

Denote the polynomial solution in the interior of a CV as
uin
h ðxÞ ¼ �uþ ~u;
where x is a quadrature point on an edge of the CV, �u is the average value of the solution on the CV, and ~u is the variation. We
first compute
mð~u;lD�uÞ;
where m is the minmod function, D�u ¼ �u1 � �u; �u1 is the average value of the solution of the adjacent CV sharing the edge and
l > 1. We take l ¼ 1:2 in our numerical runs. If the minmod function returns other than the first argument, this CV is iden-
tified as a ‘‘bad cell”, and the polynomial solution on it is regarded to be oscillatory and marked for reconstructions. The lim-
iting process is applied to SVs which contain ‘‘bad CVs” while keeping the computed spectral volume solution unchanged for
other elements.

3. Numerical examples

We first study the limiter functions and test the capability of the method to achieve the desired third order accuracy,
using the scalar Burgers equation and the Euler equation for gas dynamics. In this case, if HR is used, it is applied to all
CVs. In the two-dimensional space, the Euler equation can be expressed in conservation form
ut þ f ðuÞx þ gðuÞy ¼ 0; ð3:1Þ
where u ¼ ðq;qu;qv; EÞ; f ðuÞ ¼ ðqu;qu2 þ p;quv ;uðEþ pÞÞ and gðuÞ ¼ ðqv;quv ;qv2 þ p;vðEþ pÞÞ. Here q is the density,
ðu;vÞ is the velocity, E is the total energy, p is the pressure and E ¼ p

c�1þ 1
2 qðu2 þ v2Þ. c is equal to 1.4 for all test cases.

We then test problems with discontinuities to assess the non-oscillatory property of the scheme, again using the Euler equa-
tion for gas dynamics. The CFL numbers showed in the test problems are ones with respect to control volumes.

3.1. Numerical errors for smooth solutions of Burgers’ equation

The two-dimensional Burgers’ equation with a periodic boundary condition is employed:
@tuþ @x
u2

2

� �
þ @y

u2

2

� �
¼ 0; in ð0; TÞ �X;

uðt ¼ 0; x; yÞ ¼ 1
4
þ 1

2
sinðpðxþ yÞÞ; ðx; yÞ 2 X;

ð3:2Þ
where the domain X is the square ½�1;1� � ½�1;1�. At T ¼ 0:1 the exact solution is smooth. To demonstrate the robustness of
the WENO-type reconstruction, this reconstruction was performed on the irregular triangular meshes. The structure of the
mesh is shown in Fig. 3(a). The errors presented are those of the cell averages of u.
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Fig. 3. Meshes for accuracy tests.



Table 1
Accuracy for 2D Burgers equation with smooth solution, using HR, CFL = 0.4.

h L1 error Order L1 error Order

1/4 2.89E�3 – 1.84E�2 –
1/8 3.57E�4 3.02 1.58E�3 3.54
1/16 4.71E�5 2.92 1.11E�3 0.51
1/32 6.22E�6 2.92 1.87E�4 2.57
1/64 7.95E�7 2.97 1.03E�5 4.18
1/128 1.01E�7 2.98 5.33E�7 4.27

Table 2
Accuracy for 2D Burgers equation with smooth solution, without using HR, CFL = 0.4.

h L1 error Order L1 error Order

1/4 5.49E�3 – 9.96E�3 –
1/8 9.62E�4 2.51 5.51E�3 0.85
1/16 1.53E�4 2.65 1.11E�3 2.31
1/32 2.32E�5 2.72 9.05E�5 3.61
1/64 3.21E�6 2.85 4.10E�5 1.14
1/128 4.31E�7 2.90 1.40E�5 1.55

Table 3
Accuracy for 2D Euler equation with smooth solution, on triangular meshes, using HR, CFL = 0.4.

h L1 error Order L1 error Order

1/4 1.23E�5 – 6.23E�5 –
1/8 2.35E�6 2.39 1.01E�5 2.62
1/16 2.94E�7 3.00 1.92E�6 2.40
1/32 3.33E�8 3.14 1.93E�7 3.31
1/64 4.43E�9 2.91 2.90E�8 2.73
1/128 5.35E�10 3.05 4.20E�9 2.79
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The accuracy results are shown in Table 1. This test problem shows that HR reconstruction of piecewise quadratic poly-
nomial is approximately third order accurate, and stable. The accuracy results of the numerical solution without the use of
HR are presented in Table 2 for comparison.

3.2. Accuracy test for smooth inviscid compressible flow

A two-dimensional test problem [16] for the Euler equations is used, for ideal gas with c ¼ 1:4. The exact solution is given by
q ¼ 1þ 0:5 sinðxþ y� ðuþ vÞtÞ; u ¼ 1:0; v ¼ �0:7 and p ¼ 1. The convergence test is conducted on irregular triangular
meshes on the spatial domain ½0;1� � ½0;1� from the time T ¼ 0 to T ¼ 0:1, see Fig. 3(b) for a typical mesh. The triangle size
is roughly equal to a rectangular element case of Dx ¼ Dy ¼ h, as indicated in the first column of Table 3. The accuracy results
of numerical solutions with the use of HR are shown in Table 3. The errors presented are those of the cell averages of density. It
is clear that HR is third order accurate. Table 4 shows the accuracy results without the use of HR for the purpose of comparison.

3.3. Accuracy test for vortex evolution problem

This test problem is taken from [16] to investigate the accuracy of the scheme for the nonlinear problem with a smooth
solution. The computational domain is ½0;10� � ½0;10�. The vortex is described by a perturbation to the velocity ðu;vÞ, and the
temperature T ¼ P

q

� �
. There is no perturbation in the entropy S ¼ P

qc

� �
. The perturbation is described by
du ¼ �
2p

e0:5ð1�r2Þð5:0� yÞ;

dv ¼ �
2p

e0:5ð1�r2Þðx� 5:0Þ;

dT ¼ �ðc� 1Þ�2 e2að1�r2Þ

8cp2 ;

ð3:3Þ
where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� 5:0Þ2 þ ðy� 5:0Þ2

q
. and the strength of the vortex � is equal to 5.0. We see from Table 5 that the desired third

order accuracy is achieved in L1 norm. Table 6 shows the accuracy results without the use of HR for the purpose of
comparison.



Table 5
Accuracy for 2D vortex evolution problem, using HR, CFL = 0.4.

h L1 density error Order L1 density error Order L1 energy error Order L1 energy error Order

1/2 5.35E�3 – 6.33E�3 – 2.26E�2 – 2.42E�2 –
1/4 6.81E�4 2.97 9.49E�4 2.74 2.73E�3 3.05 4.12E�3 2.55
1/8 8.46E�5 3.01 1.26E�4 2.91 3.36E�4 3.02 5.52E�4 2.90
1/16 1.05E�5 3.01 1.52E�5 3.05 4.31E�5 2.96 6.96E�5 2.99
1/32 1.32E�6 2.99 1.80E�6 3.08 6.32E�6 2.77 2.39E�5 1.54

Table 4
Accuracy for 2D Euler equation with smooth solution, on triangular meshes, without using HR, CFL = 0.4.

h L1 error Order L1 error Order

1/4 2.52E�5 – 6.57E�5 –
1/8 4.13E�6 2.61 1.51E�5 2.12
1/16 6.47E�7 2.67 3.00E�6 2.33
1/32 1.05E�7 2.62 5.10E�7 2.56
1/64 9.34E�9 3.49 5.20E�8 3.29
1/128 1.09E�9 3.10 7.55E�9 2.78

Table 6
Accuracy for 2D vortex evolution problem, without using HR, CFL = 0.4.

h L1 density error Order L1 density error Order L1 energy error Order L1energy error Order

1/2 7.72E�3 – 1.24E�2 – 3.24E�2 – 6.49E�2 –
1/4 1.26E�3 2.62 1.92E�3 2.69 5.14E�3 2.66 1.02E�2 2.67
1/8 2.18E�4 2.53 2.82E�4 2.77 8.54E�4 2.59 1.72E�3 2.57
1/16 3.78E�5 2.53 5.26E�5 2.42 1.50E�4 2.51 2.95E�4 2.54
1/32 6.53E�6 2.53 1.17E�5 2.17 2.92E�5 2.36 5.56E�5 2.41
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Remark. Recently a weak instability was found in some partitions [1], which include the partition used in the present
paper. From the above accuracy tests, it seems that HR can stabilize the SV method on this partition and as a result improve
the accuracy. We have observed similar phenomena when applying HR to central DG and DG methods. For example, in [12],
convergence tests verify the expected third order accuracy for central DG with HR at the CFL number 0.4, while linear sta-
bility analysis shows that the central DG (without HR) should be stable at a CFL number no more than 0.33 [14]. In prelimin-
ary convergence tests conducted along with [25] (which will be further studied in the future), we have observed test results
verifying the expected third order accuracy for DG with HR at the CFL number 0.5 (0.4 when using partial neighboring cells),
while linear stability analysis shows that the DG (without HR) should be stable at a CFL number no more than 0.2 [3].

3.4. Shu–Osher problem

The initial data of the Shu–Osher problem [18] are:
ðq; u;pÞ ¼
ð3:857143;2:629369;10:333333Þ if x 6 �4;
ð1þ 0:2 sinð5xÞ;0;1Þ if x P �4:

	
ð3:4Þ
We consider the solution of the Euler equations in a rectangular domain of ½�5;5� � ½0;0:1� with a triangulation of 301 ver-
tices in the x-direction and 4 vertices in the y-direction. The triangular mesh is obtained by adding a diagonal line in each
rectangle on a rectangular grid. The CFL number is 0.4. The initial velocity along the y-direction is zero. The density at t ¼ 1:8
from the P2 numerical solution is shown in Fig. 4(a). Fig. 4(a) is obtained by interpolating the numerical solution along the
horizontal line y = 0.05 on 301 equally spaced points. From Fig. 4(a), we can clearly see that the resolution of the method is
good. The details of the solution are almost exactly recovered. Fig. 4(b) is the 3D view of the solution.

3.5. Shock tube problems of Euler equations

We consider the solution of the Euler equations in a rectangular domain of ½�1;1� � ½0;0:2� with a triangulation of 101
vertices in the x-direction and 11 vertices in the y-direction. The triangular meshes as in Section 3.4 are used. The initial
velocity along the y-direction is zero.

The first case is the Sod problem [19]. The initial data is
ðq; u;pÞ ¼
ð1;0;1Þ; if x 6 0
ð0:125;0;0:1Þ; if x > 0:

	
ð3:5Þ
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Fig. 4. Shu–Osher problem, third order spectral volume solution, density plot. (a) Cut line view by interpolating the solution data along the horizontal line
y = 0.05 on 301 equally spaced points; (b) 3D view of the solution.
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The density at t ¼ 0:40 is shown in Fig. 5(a).
The second case is the Lax problem [7]. The initial data is
ðq;u;pÞ ¼
ð0:445; 0:698;3:528Þ; if x 6 0
ð0:5;0;0:571Þ; if x > 0:

	
ð3:6Þ
The density at t ¼ 0:26 is shown in Fig. 5(b).



−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

x

D
en

si
ty

Sod Problem: Density Distribution

p2 solution
Exact

(a)

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

x

D
en

si
ty

Lax Problem: Density Distribution

p2 solution
Exact

(b)
Fig. 5. P2 spectral volume solutions to Shock tube problems: density plot; cut line view by interpolating the solution data along the horizontal line y = 0.1
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Fig. 5(a) and (b) are obtained by interpolating the numerical solutions along the horizontal line y ¼ 0:1 on 101 equally
spaced points. They show almost negligible over/under-shoots and sharp contact profile.

For the purpose of comparison with standard finite volume method, profiles of the numerical solutions along the horizon-
tal line y ¼ 0:1 on 303 equally spaced points are plotted in Fig. 6(a) and (b). The quality of the P2 spectral volume solution is
comparable with those from standard finite volume method.
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3.6. 2D shock vortex interactions

This test case is taken from [16] to investigate the ability of the scheme to resolve the vortex and the interaction. The
computational domain is ½0;2� � ½0;2�. Initially a Mach 1.1 shock is positioned at x ¼ 0:5 and normal to the x-axis. Its left state
is ðq;u;v ; PÞ ¼ ð1;1:1 ffiffifficp ;0;1Þ. The vortex is described by a perturbation to the velocity ðu;vÞ, temperature T ¼ P

q

� �
and en-

tropy S ¼ ln P
qc

� �
of the mean flow and has the values:
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~u ¼ �seað1�r2Þ sin h;

~v ¼ ��seað1�r2Þ cos h;

eT ¼ �ðc� 1Þ�2 e2að1�r2Þ

4ac
;

eS ¼ 0;

ð3:7Þ
where s ¼ r
rc
; r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� xcÞ2 þ ðy� ycÞ

2
q

; ðxc; ycÞ ¼ ð0:25;0:5Þ, the strength of the vortex � is equal to 0.3, rc ¼ 0:05 and
a ¼ 0:204. The triangular meshes used are as in Fig. 3. The triangle edge length is roughly equal to 1=100.

The density profile in ½0;2� � ½0;1� is plotted at T ¼ 0:35 in Fig. 7, with 30 equally spaced contours. It shows that the profile
of the vortex after passing the stationary shock is preserved.

3.7. Double Mach reflection

The Double Mach reflection problem is taken from [24]. We solve the Euler equations on a rectangular computational do-
main of ½0;4� � ½0;1�. A reflecting wall lies at the bottom of the domain starting from x ¼ 1

6. Initially a right-moving Mach 10
shock is located at x ¼ 1

6 ; y ¼ 0. The shock makes a 60� angle with the x axis and extends to the top of the computational do-
main at y ¼ 1. The reflective boundary condition is used at the wall. The region from x ¼ 0 to x ¼ 1

6 along the boundary y ¼ 0 is
always set with the exact post-shock solution, so is the left-side boundary. At the right-side boundary, the flow through bound-
ary condition is used. At the top boundary, the flow values are set to describe the exact motion of the initial Mach 10 shock.

Triangular meshes are used with the triangle edge length roughly equal to 1
200 and 1

400, respectively. The portion of the
mesh shown in Fig. 8 corresponds to the case with edge length 1

200. The results are plotted at t ¼ 0:2. The density contour
of the flow at the time t ¼ 0:2 in ½0;3� � ½0;1� is shown with 30 equally spaced contour lines.

Fig. 9 is the contour plot of the P2 spectral volume solutions with triangle edge lengths 1
200 and 1

400. Fig. 10 shows the
‘‘blown-up” portion around the Double Mach region. With finer mesh, more roll-ups are captured as expected.

Remark on scaling to remove negative pressure. We noticed that strong shocks in the Double Mach reflection problem
introduce the negative pressure at quadrature points if they are very close to the shock front due to some small undershoots.
The negative pressure may still exist after applying HR. The scaling technique [25] is applied at the end of HR if necessary to
remove the negative pressure. The idea is as follows: if at a quadrature point of a CV, the negative pressure remains after
reconstruction with the reconstructed polynomial uh, we redefine the new polynomial u�h to be: u�h ¼ �uh þ 0:5ðuh � �uhÞ, where
�uh is the average value of uh on the CV. The negative pressure is removed after 1 or 2 iterations of the scaling normally.
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Fig. 7. 2D shock vortex interaction. Density contour at t ¼ 0:35 with 30 equally spaced contour lines.
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3.8. Remark on computational cost of HR

To estimate the computational cost of HR, we use the Burgers’ equation with smooth solution as a test case. See Section
3.1 for a description of the setup of the problem. The CPU time is about 2 h 44 min on a 2.4 GHz processor (AMD Opteron
250) by the P2 spectral volume method with HR on a mesh with triangle edge length roughly equal to 1

128 (in this case,
HR is applied on every control volume). The CPU time is about 1 h 59 min for the same test without HR. Therefore, HR takes
about 27% of the total computational time. The code is written in C and is compiled with ‘‘g++�O3”.
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4. Concluding remarks

We have developed the HR reconstruction procedure and used it as a limiter for the spectral volume method on unstruc-
tured triangular meshes. The HR reconstruction with the WENO-type reconstruction of linear polynomials maintains the de-
sired order of accuracy and resolution, and effectively reduces spurious oscillations for discontinuous solutions. We also
would like to point out that HR seems to reduces the magnitude of the error as well based on the accuracy tests.

In the future, we will explore how HR stabilizes the P2 spectral method with the partition utilized in the present paper
and improves the accuracy.
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